Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310037, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634208

RESUMO

Highly concentrated "'water-in-salt"' (WIS) electrolytes are promising for high-performance energy storage devices due to their wide electrochemical stability window. However, the energy storage mechanism of MnO2 in WIS electrolytes-based supercapacitors remains unclear. Herein, MnO2 nanoflowers are successfully grown on mesoporous bowl-like carbon (MBC) particles to generate MnO2/MBC composites, which not only increase electroactive sites and inhibit the pulverization of MnO2 particles during the fast charging/discharging processes, but also facilitate the electron transfer and ion diffusion within the whole electrode, resulting in significant enhancement of the electrochemical performance. An asymmetric supercapacitor, assembled with MnO2/MBC and activated carbon (AC) and using 21 m LiTFSI solution as the WIS electrolyte, delivers an ultrahigh energy density of 70.2 Wh kg-1 at 700 W kg-1, and still retains 24.8 Wh kg-1 when the power density is increased to 28 kW kg-1. The ex situ XRD, Raman, and XPS measurements reveal that a reversible reaction of MnO2 + xLi+ + xe-↔LixMnO2 takes place during charging and discharging. Therefore, the asymmetric MnO2/MBC//AC supercapacitor with LiTFSI electrolyte is actually a lithium-ion hybrid supercapacitor, which can greatly boost the energy density of the assembled device and expand the voltage window.

2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 937-944, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37586792

RESUMO

Objective: To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery. Methods: GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized. Results: The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect. Conclusion: GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.


Assuntos
Quitosana , Nitrato de Prata , Titânio , Antibacterianos/farmacologia , Corantes
3.
J Biomater Appl ; 37(7): 1300-1314, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607821

RESUMO

Polymethyl methacrylate (PMMA) bone cement is now widely used in percutaneous vertebro plasty (PVP) and percutaneous kyphoplasty (PKP). However, studies showed that the radiopacifiers (zirconia, barium sulfate, etc.) added to PMMA will have a negative impact on its use, e.g. barium sulfate will weaken the mechanical properties of bone cement and lead to bone absorption and aseptic loosening. Iodine is an element existing in the human body and has good imaging performance. Iodine contrast agent has been used in clinic for many years and has abundant clinical data. Therefore, using iodine instead of barium sulfate may be a promising choice. In this paper, the effect of different content of diatrizoate sodium (DTA, C11H8I3N2NaO4) on the properties of PMMA was studied and compared with the traditional PMMA bone cement containing 30 wt% barium sulfate. The mechanical properties, setting properties, radiopacity, and biocompatibility of bone cement were evaluated. The compressive strength of PMMA bone cement with 20 wt% DTA can reach 76.38 MPa. DTA released from bone cement up to 14 days accounted for only 2.3% of its dosage. The water contact angle was 62.3°. The contrast of bone cement on X-ray film was comparable to that of bone cement containing 30 wt% barium. The hemolysis rate was lower than 4%, and there was no obvious hemolysis. PMMA with 20 wt% DTA can maintain the relative growth rate of MC3T3-E1 and L929 cells above 80%. The results show that adding 20 wt% DTA into PMMA can obtain good radiopacity while maintaining its mechanical properties, setting properties, and biocompatibility. DTA can be used as a promising candidate material for PMMA bone cement radiopacifier.


Assuntos
Iodo , Polimetil Metacrilato , Humanos , Cimentos Ósseos , Sulfato de Bário , Diatrizoato , Hemólise , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...